Principle 5

Primary Productivity — A		Ecosystem Diversity — B																
Microbes, such as cyanobacteria and phytoplankton, are the most abundant li									The diversity of ocean ecosystems allows for many lifeforms and adaptations of ocean organisms.									
portant primary producers in the ocean. They are the base of most of the food	webs in the ocean.								Phyletic Diversity — C1									
							The diversity of phyl	a is greater in the ocean than	on land, and includes a	a range of organisms,	from the smallest living thir	ngs (microbes) to the larges	st animal on Earth (blue whale).				Organisms in the ocea	
A1	A7	B1		B6			C2			C8					C19		C23	
Primary production is the net gain in organic matter that occurs when producers make more organic matter than they use in respiration.	Chlorophyll, the green pigment found in microbes, algae, and other photosynthetic organisms, absorbs energy from sunlight; and together with carbon dioxide (inor ganic carbon) and water, converts and stores chemical energy in the form of glucose (organic carbon).	and abiotic factors such as oxygen, salinity, temperature, pH, light, nutrients, pressure, substrate, and circulation. A few regions of the ocean support the most abundant life on Earth, while the vast majority of the ocean does not support much life. converts sy in the		Ocean ecosystems are often composed of habitats and microhabitats that exist in distinct, vertically distributed zones. Vertical zonation exists as distinct horizontal layers or bands on the coastline and throughout the water column.			The first forms of life started in the ocean and evolved into the phyla seen today.		Most of the organisms and biomass in the ocean are small prokaryote and eukaryote microbes, which are the basis of all ocean food webs.				animals than on land due th to its unique physical and ha biological characteristics. Th ph to		There are varying level the ocean. Some ocean have adaptations that a to stay near the sunlit s These adaptations allow photosynthesize (e.g., p ton, kelp) and others to their food source (e.g., z			
A2 A6		B2		B7	B10	B11	C3	C5			C9			C13	C20	C21	C24	
Nutrients, such as minerals and vitamins, are needed to convert glucose into other organic material used to grow and reproduce. Some of the most important nutrients for producers in the ocean include: nitro- gen (especially nitrate), phosphate, silicate, and iron. Nitrogen is often the nutrient in shortest supply.Organisms that do not make their own food (het- erotrophs) are dependent on the primary producers (autorophs) to get the energy and matter they need to survive.		Ocean ecosystems with the greatest abundance of life occur where environmen- tal conditions and/or adaptations allow for high levels of productivity.		Zonation patterns occur in part because ocean organisms are adapted to live within specific environmental conditions.	Ocean ecosystems are connected to each other in a macro food web. Over time, organisms move from one ecosystem to another as they grow, migrate, and die. Changes in an ecosystem or an organism may have unpredictable effects on other ecosystems.	ditions, including physical (e.g., temperature, depth) and	to evolve were fish. Fish are the most numerousare still found exclusively in the ocean.These include seaweeds, echinoderms, ctenophores, urochordates (tunicates), and			Prokaryote microbes are the most numerous ocean organisms.			There are many diverse groups of eukaryote microbes in- cluding unicellular algae (phytoplankton) and fungi.		Seawater in denser tha air, and thy supports animals with much greater ma	n productivity of s particular plac es in the ocean such as upwell	Plankton have feature as oil droplets, spines, flagella, and/or a large face area to volume rat	
A3 A4		B3 B4	B5	B8 B9		B12	C4	C6	C7	C10	C11	C12	C14	C16 C1	8			
Most of the nutrients needed for primary productivity come from nutrient recycling. Nitrogen, phosphorus, and other nutrients in organic molecules, such as proteins and nucleic acids, are released when organisms die and are decomposed by bacteria.Some of the organic matter producers sinks below the sunlit surface zone, carrying nutrients to the deep.A5A5There is a direct relationship between primary productivity, current patterns, and upwell- ing. The highest levels of pri- mary productivity are near the polar regions and in upwelling zones where there are high lev- els of nutrients and sunshine.There is a direct relationship between primary productivity are near the polar regions and in upwelling. The tighest levels of primary productivity are near the polar regions and in upwelling. The tighest and sunshine.There is a direct relationship between primary productivity are near the polar regions and in upwelling. The tighest levels of primary productivity are near the polar regions and in upwelling. The tighest here are high levels of nutrients and sunshine.		great diversity and number of organisms, which is due in part to: abundant sunlight and cur- rent patterns (e.g., upwelling, which brings nutrients to the surface, and nutrients flowing	ecosystems on Earth, thrive in nu- rient-poor, warm waters because of a symbiotic relationship between corals and zooxanthellae, a type of dinoflagellate. This relationship enables corals to grow, forming	Many intertidal or- ganisms are adapted to survive in zones defined by tidal cycles (amount of dation, or substrate.	5	Niches in the ocean are in a very dynamic environment, contrib- uting to the high diversity seen in this ecosystem, e.g., sudden upwelling events create an en- vironment conducive to the sur- vival of a different set of organ- isms than were present prior to the influx of nutrient-rich water.	left the ocean and evolved further on land. Some memberss of those groups later returned to the ocean such as mammals, reptiles, birds, and		eukaryotes, multicel- lular photosynthetic organisms that have no seeds, and lack s true roots and leaves. There are three phy-	chemosynthetic primary producers, and make their owr food from chemical compounds, such as , hydrogen sulfide at	into the environment. Some symbiotic bacteria are responsible for the	Photosynthetic bacteria, called cyanobacteria, are thought to have made most of the oxygen in the atmosphere. Cyanobacteria were the first photosynthetic or- ganisms, and still produc much of Earth's oxygen.	plankton that have animal-like features, such as flagella, and can ingest food as heterotrophs. Some of these organisms cause red tides and bioluminescence. Some, called zooxanthellae, have symbiotic relationships with	e produced on Earth. Diatoms have cell walls made of glass- like silica. The ocean floor is covered by vast deposits of these siliceous sediments.	f ma- gi and mostly s. Most are			

A Handbook for Increasing Ocean Literacy

Principle 5: The ocean supports a great diversity of life and ecosystems.

The ocean provides a vast, interconnected living space with diverse and unique ecosystems from the surface through the water column and down to the sea floor.

					Diversity of L	ife — C												
Diverse Adaptations to Environmental Factors — C22 Organisms in the ocean exhibit a wide variety of adaptations to survive in a watery environment.							Diversity of Feeding Behaviors — C37 Many marine organisms have adaptations for feeding, capturing prey, and avoiding predators.			Diversity of Life Cycles and Reproductive Strategies — C44 Organisms in the ocean have a variety of reproductive strategies and life cycles.								
	C23	C23 C25		C29	C31	C33	C38	C40	C42	C45		C47			C53	C55		
arger due and stics.	There are varying levels of light in the ocean. Some ocean organisms have adaptations that allow them to stay near the sunlit surface. These adaptations allow some to photosynthesize (e.g., phytoplank- ton, kelp) and others to stay near their food source (e.g., zooplankton).	The ocean acts as a filter, and allows different wavelengths of light to pen- etrate to different depths: red, yellow, and orange wavelengths are filtered out in shallow water; green and blue light penetrate the deepest. The color of some organisms is a feature that allows them to be camouflaged at different depths.	shrimp to whales, rely on sound to communicate, find prey and mates, and	Some ocean organ- isms have adaptations for living in or diving to the deep ocean.	adaptations that allow	Marine organisms are adapted to live within particular ecosystems in a relatively stable ocean where there are only small fluctuations in pH and temperature.	Some marine organisms have strategies and/or structures for finding food in the vast ocean where there is: varied abundance of food in specific locations like in coastal regions and upwelling zones; or scarcity of food in large expanses like the open ocean and deep sea.	Marine organisms have strat- egies and/or structures for capturing food in a watery environment where: food may be suspended in the wa- ter column; the organism has to contend with the fluid fric- tion of water and buoyancy.	Some marine organ- isms have symbiotic relationships that help them acquire energy.	Marine organisms have different lifestyles (i.e., planktonic, nektonic, benthic), and many transition between lifestyles as part of their life cycle, which allows them to survive in different ecosystems at different stages in their development. This is ad- vantageous for a variety of reasons, such as: juveniles accessing different resources than adults (e.g., food and space); limiting competition between juveniles and adults; decreased preda- tion rates on, and increased available nutrients for, juveniles.	Marine organisms have a range of life cycles and reproductive modes from simple, asexual reproduction to complex sexual reproduction, and some spe- cies shift between asexual and sexual (alternation of generation).			Reproductive strategies of marine organisms tend to be related to population density of the species, and thus are connected to mate competition and chances of finding mates.	Marine organisms have strategies for finding mates and maximizing fertilization of eggs in the vast ocean.	Marine organisms have strategies for maximizing survival and dispersal of offspring that have a range of parental care levels, thus the strategies entail different amounts of energy resources and investments from the parents.		
C21	C24	C26	C28	C30	C32	C34	C39	C41	C43	C46	C48	C49	C50	C52	C54	C56		
reat ctivity of ular plac- he ocean, is upwell- nes and regions, upport isms than that can on land.	c- flagella, and/or a large sur- , face area to volume ratio. -	Even in relatively shallow water, many red organisms appear gray and are camouflaged.	Many large whales use low-frequency sound to communicate across entire ocean basins. Many toothed whales use echolocation to find and/or capture prey. Pistol shrimps use blasts of sound to shock prey.	creasing oxygen storage. Many organisms use bio- luminescence to find or	organisms, including most fish, are more dilute than the surrounding seawater, so they	shell formation due to ocean acidification).	chambered nautili, and zooplankton); and having fat reserves (e.g., marine mammals and sea birds). For surviv- ing in environments where prey are	catching food in suspension (e.g., cnidarians, crinoids); filtering large quantities of water to strain out smaller or- ganisms (e.g., baleen in whales, siphons in clams, modified legs in barnacles); and having strong muscles or fast reflexes to chase down and snatch prey (e.g., fast swimming tuna and marlin, tentacles	and oxygen from photosyn- thesis by the zoxanthellae and the zooxanthellae gets carbon dioxide, nutrients and shelter from the coral.	Some examples of these changes between lifestyles include: benthic adult crabs in the intertidal with a juvenile planktonic larval form; and sessile adult mollusks with a planktonic larval form.	nes) and budding (e.g., sponges). Organisms that reproduce asexu- ally can have extremely fast growth rates under favorable environ- mental conditions	Some marine organisms have alternation of generations, switching between sexual and asexual reproduction each generatior (e.g., jellyfish, seaweed). For seaweeds, dip loid sporophyte generation produces hap- loid spores through meiosis, and a haploid gametophyte generation produces haploid gametes. The fertilized gametes produce the sporophyte. In some green and brown algae, the gametophyte and the sporo- phyte look identical, while in kelps the large organism we see is the sporophyte. The kelp gametophyte is microscopic.	involve separate males and females; or switching between male and female or vice versa or have both male and female reproductive organs simultaneously (i.e., hermaphroditic). Some her- maphroditic species change sex in response to age, popu- lation changes, and shifts in environmental factors (e.g.,	organisms may change sex (e.g., blue head wrasse) or have multiple mates (e.g., squid). In places with low-population density, organisms may be monog- amous (e.g., pelagic species like mahimahi), or develop parasitic relationships (e.g.,	These strategies include: using multiple environmental cues, such as day length, tidal cycles, seasonal vari- ations in current patterns, to synchro- nize their breeding or spawning cycles (e.g., grunions, elephant seals, and butterfly fish). For species that have ex- ternal fertilization, females and males produce millions of eggs and sperms (e.g., sea urchins, squids); and for deep sea and pelagic species, producing bioluminescent signals to attract mates (e.g., some pelagic octopuses).			

C35 C36

Shelled organisms use calcium
carbonate to construct shells and
skeletons, relying on the abundant
carbonate ions usually available in
ocean water. As ocean pH decreases,
the concentration of available carbon-
ate ions also decreases, and carbonate
from shells dissolves into the ocean
water, leading to thinning shells.Small increases in
temperature can
lead to coral bleach-
ing as the symbiotic
algae (zooxanthel-
lae) living inside the
coral polyp leave
resulting in the
death of the coral.